Spatial-Temporal Sub-Pixel Mapping Based on Swarm Intelligence Theory
نویسندگان
چکیده
In the past decades, sub-pixel mapping algorithms have been extensively developed due to the large number of different applications. However, most of the sub-pixel mapping algorithms are based on single-temporal images, and the results are usually compromised without auxiliary information due to the ill-posed problem of sub-pixel mapping. In this paper, a novel spatial-temporal sub-pixel mapping algorithm based on swarm intelligence theory is proposed for multitemporal remote sensing imagery. Swarm intelligence theory involves clonal selection sub-pixel mapping (CSSM), which evolves the solution by emulating the biological advantage of the human immune system, and differential evolution sub-pixel mapping (DESM), which optimizes the solution by intelligent operations and heuristic searching in the solution pool. In addition, considering the under-determined problem of sub-pixel mapping, the spatial-temporal sub-pixel mapping method is used to obtain the distribution information at a fine spatial resolution from the bitemporal image pair, which exactly regularizes the ill-posed problem. Furthermore, the short-interval temporal information and the fine spatial distribution information within the bitemporal image pair can be integrated for further use, such as timely and detailed land-cover change detection (LCCD). To verify the validation of the swarm intelligence theory based spatial-temporal sub-pixel mapping algorithm, the proposed algorithm was compared with several traditional sub-pixel mapping algorithms, in both synthetic and real image experiments. The experimental results confirm that the proposed algorithm outperforms the traditional approaches, achieving a better sub-pixel mapping result both qualitatively and quantitatively, as well as improving the subsequent LCCD performance.
منابع مشابه
Robot Motion Vision Pait I: Theory
A direct method called fixation is introduced for solving the general motion vision problem, arbitrary motion relative to an arbitrary environment. This method results in a linear constraint equation which explicitly expresses the rotational velocity in terms of the translational velocity. The combination of this constraint equation with the Brightness-Change Constraint Equation solves the gene...
متن کاملSub-pixel mapping based on artificial immune systems for remote sensing imagery
A new sub-pixel mapping strategy inspired by the clonal selection theory in artificial immune systems (AIS), namely, the clonal selection sub-pixel mapping (CSSM) framework, is proposed for the sub-pixel mapping of remote sensing imagery, to provide detailed information on the spatial distribution of land cover within a mixed pixel. In CSSM, the sub-pixel mapping problem becomes one of assignin...
متن کاملAssessing a Temporal Change Strategy for Sub-Pixel Land Cover Change Mapping from Multi-Scale Remote Sensing Imagery
Remotely sensed imagery is an attractive source of information for mapping and monitoring land cover. Fine spatial resolution imagery is typically acquired infrequently, but fine temporal resolution systems commonly provide coarse spatial resolution imagery. Sub-pixel land cover change mapping is a method that aims to use the advantages of these multiple spatial and temporal resolution sensing ...
متن کاملHybrid 3D Dynamic Measurement by Particle Swarm Optimization and Photogrammetric Tracking
High-accuracy motion modeling in three dimensions via digital images has been increasingly the matter of interest in photogrammetry and computer vision communities. Although accurate sub-pixel image registration techniques are the key elements of measurement, they still demand enhanced intelligence, autonomy, and robustness. In this paper, a new correlationbased technique of stereovision is pro...
متن کاملAdaptive Multi-objective Sub-pixel Mapping Framework Based on Memetic Algorithm for Hyperspectral Remote Sensing Imagery
Sub-pixel mapping technique can specify the location of each class within the pixels based on the assumption of spatial dependence. Traditional sub-pixel mapping algorithms only consider the spatial dependence at the pixel level. The spatial dependence of each sub-pixel is ignored and sub-pixel spatial relation is lost. In this paper, a novel multi-objective sub-pixel mapping framework based on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016